If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=6Y+4Y-3Y-2Y+8Y^2-5
We move all terms to the left:
-(6Y+4Y-3Y-2Y+8Y^2-5)=0
We get rid of parentheses
-8Y^2-6Y-4Y+3Y+2Y+5=0
We add all the numbers together, and all the variables
-8Y^2-5Y+5=0
a = -8; b = -5; c = +5;
Δ = b2-4ac
Δ = -52-4·(-8)·5
Δ = 185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{185}}{2*-8}=\frac{5-\sqrt{185}}{-16} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{185}}{2*-8}=\frac{5+\sqrt{185}}{-16} $
| 24=-5x+7(x+4) | | 4.8+3.4x=-2.6x | | (x-3)(x+4)=x•x+4 | | 5/5=x/8 | | 14b+(-12)+(-4)=12 | | 120=12t^2+2t | | 2^4=8^3x-10 | | R+8.8=3r+7 | | -28=5(u-4)+3u | | 12x–13=131 | | (a+5)+a+27=180 | | (5z+7)=63 | | 4^-2m=16 | | (3z+32)=67 | | (6z-49)=77 | | 2w^2+2w+21-(w+4)^2=0 | | (4x-28)=68 | | (6z-115)=65 | | (4x-63)=65 | | 8x-2=6+12 | | 3y+32)=67 | | 9^2x-1=9^-1 | | M^2=8m+33 | | (3y+32=67 | | 32=14+6x | | (2x+4)^2=100 | | 3/4q-2=-4 | | 239=-u+95 | | (3z+26)=85 | | 101-x=208 | | 2/5x+1/2=4 | | (4x-36)=80 |